Blog | Author & linked github | Details | Langugae |
Open.nfo | bioinformatics, linux, open-source software, open science | ||
Bioinformatics Zen | Michael Barton | best practices for bioinformatics programming and software development | |
Genedrift | Paulo Nuin | a step-by-step guide to create Python applications in bioinformatics | Python |
Blue Collar Bioinformatics | Brad Chapman | programing practical day to day work of biological data analysis and presentation | Python |
Chem-bla-ics | Egon Willighagen | open source cheminformatics, computational chemistry programming | Java |
Depth-First | Richard Apodaca | cheminformatics application development including databases | Java, Ruby, Rails |
Mailund on the Internet | Thomas Mailund | phylogenetics , statistical programming in bioinformatics, | R |
So much to do, so little time | Rajarshi Guha | open source chemoinformatics, QSAR and REST programming | REST, Java, Python |
ChemHack | Duan Lian | JavaScript for Cheminformatics | JavaScript |
One R Tip A Day | Paolo Sonego | statistical programming in bioinformatics | R |
Programming for Scientists | Rich + Ben | Software development wisdom and common-sense for the scientist-programmer | |
Paul Davis | Paul Davis | Bioinformatics in Python, Bioinformatics Formats JSON | Python |
Saaien Tist | Jan Aerts | visualization and annotation of chrmosomes in bioinformatics | Ruby |
What You’re Doing Is Rather Desperate | Neil Saunders | computational analysis of protein-protein interactions | Perl |
Your bones got a little machine | Andrew Perry | applications for structural biology and structural bioinformatics | Python |
Scienceoss | excellent bioinformatics plotting , analysis resources | R, Python, IPython | |
Gregor Gorjanc | Gregor Gorjanc | code for statistical/quantitative genetics | R, SAS |
Bleeding Edge Biotech | Adam Kraut | Parallel Programming, Grid Computing | |
YOKOFAKUN | Pierre Lindenbaum | Codifying bioinformatics, semantic web applications | |
Cognitive Consonance | Tiago Antao | Software engineering in a computational biology environment | Groovy, Java, DSL |
Andrew Dalke | Andrew Dalke | software for computational chemistry and biology using Python | Python |
iPhylo | Roderic Page | semantic web, taxonomy and phylogeny | |
It's Not Easy Being Genes | Chris Lasher | genetics, bioinformatics, and computational biology | Python |
Daily Life in an Ivory Basement | Titus Brown | testing, and programming in bioinformatics | Python |
The Third Bit | Gregory V. Wilson | open source software development for scientists and engineers | Java, Python |
Biorelated | George Githinji | bioinformatics, biological software development | Ruby |
Nakao’s bioruby blog | Nakao Mitsuteru | bioinformatics with bioruby | Ruby |
igraph | Gabor Csardi | prorgrmming for graph theory and network analysis | R, Python |
Inparablog | John van Dam | comparative genomics and bioinformatics | Perl, Python |
Bioinfo Blog! | programming and testing in bioinformatics | Perl, Python | |
Mark Bieda’s Weblog | Mark Bieda | bioinformatics and genomics |
生物 生物信息学
2009年2月17日星期二
[推荐]30+的生物信息学blog
http://www.abhishek-tiwari.com/2009/02/30-blogs-about-bioinformatics-and.html
[资讯]生物医学的基因组工作平台
在过去生物医学的工作者们,各自开发自己的程序,这样导致他们使用的工具有很大的不同。如果能够有更加统一的方法,研究工作会进展的更好。
为了解决这个问题,服务器在哥伦比亚大学的计算生物学和生物信息学中心的基因组和细胞网络的多维分析国家中心( National Center for Multiscale Analysis of Genomic and Cellular Networks (MAGnet))开发了, geWorkbench (genomics Workbench), 应用程序的开发和扩展框架。它为很多有用的生物医学图形分析和可视化软件提供了统一的接口。
GeWorkbench是一个整合了基因表达和序列分析,以及细胞网络分析,并且具有强大的可视话功能的基因组分析平台。
现在在geWorkbench上已经有50多个分析应用程序。开发者每年增加5-10个并对已有的进行维护和升级。如果研究者需要的使用其没有的功能,它会提供到 caGrid 的接口。 CaGrid 是在caBIG下的网格设施,提供了很多可以在线和远程使用的网格工具。
如果研究者仍然不能找到他们所需要的工具,还可以使用geWorkbench平台来使用很少的语言开发他们自己的工具。
“GeWorkbench provides a user-friendly interface where researchers can collect the information and applications they need, search for and use a grid service when necessary, and quickly get results,” said Aris Floratos, of the Center for Computational Biology and Bioinformatics.
—Amelia Williamson, for iSGTW
为了解决这个问题,服务器在哥伦比亚大学的计算生物学和生物信息学中心的基因组和细胞网络的多维分析国家中心( National Center for Multiscale Analysis of Genomic and Cellular Networks (MAGnet))开发了, geWorkbench (genomics Workbench), 应用程序的开发和扩展框架。它为很多有用的生物医学图形分析和可视化软件提供了统一的接口。
GeWorkbench是一个整合了基因表达和序列分析,以及细胞网络分析,并且具有强大的可视话功能的基因组分析平台。
现在在geWorkbench上已经有50多个分析应用程序。开发者每年增加5-10个并对已有的进行维护和升级。如果研究者需要的使用其没有的功能,它会提供到 caGrid 的接口。 CaGrid 是在caBIG下的网格设施,提供了很多可以在线和远程使用的网格工具。
如果研究者仍然不能找到他们所需要的工具,还可以使用geWorkbench平台来使用很少的语言开发他们自己的工具。
“GeWorkbench provides a user-friendly interface where researchers can collect the information and applications they need, search for and use a grid service when necessary, and quickly get results,” said Aris Floratos, of the Center for Computational Biology and Bioinformatics.
—Amelia Williamson, for iSGTW
订阅:
博文 (Atom)